
Contents

Application Note

Document No.: AN1126

Instructions for Use of G32R501 IDE and

Tool Chain

Version: V1.1

Document No.: AN1126

www.geehy.com Page 1

1. Introduction

In modern embedded system development, choosing appropriate development tools and

environments is crucial for successfully achieving the project goals. Regardless of development

of new projects or porting of existing projects, developers need to flexibly respond to different

development environments and chip architectures. This document aims to provide a detailed

guide for developers to help them smoothly configure and use these two popular development

environments when developing with the G32R501 MCU.

To make full use of the information in this guide, users shall be familiar with the characteristics

of G32R501 series MCU. Users can refer to the following relevant technical documents:

⚫ G32R501 Series User Manual, Datasheet, Programming Manual, and Migration Manual

⚫ Related documents for G32R501 series core, including ARMv8.1-M Architecture Reference

Manual, etc.

This document provides a detailed introduction to the steps of configuring projects in MDK-ARM

and IAR EW for Arm, covering the entire process from project creation, compilation linking to

debugging. By comparing the characteristics and settings of different development

environments, readers can better understand how to efficiently develop embedded projects in

different development environments.

This document will guide readers to master the skills of developing G32R501 in MDK-ARM and

IAR EW for Arm environments, to lay a solid foundation for the successful implementation of the

projects.

1.1. Full Name and Abbreviation Description of Terms

The keywords and descriptions used in this document are as shown in Table 1.

Table 1 Abbreviation Description

Full name in English English abbreviation

Configurable Static Memory Subsystem CFGSMS

Software SW

Hardware HW

Interface IF

AHB slave interface ahbs_if

1.2. R5xx SoC Introduction

R5xx SoC is a system on a chip (SoC) based on Cortex-M52 dual cores. This SoC adopts the

widely used AMBA 2.0 bus to integrate peripheral IP components: the components that require

broad bandwidth are connected to the AMBA AHB bus, while the low-speed components are

connected to the AMBA APB bus. DMA cannot access the registers related to FLB.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 2

The architecture of R5xx SoC is as shown in Figure 1.

Figure 1 R5xx SoC Architecture

FLASH0

SRAM 1
8 KB

SRAM 2
8 KB

Configurable

Configurable

DEMUX 1

PWM2

PWM3

QEP1

CFGSMS

PWM1

APB3

FLASH1

SRAM 3
32 KBConfigurable

DMA

GPIOCTRL

32-bit
AHB
BUS-
MATRIX

CPU0

ITCM DTCM0 DTCM1

ITCM

C- BUS

D CACHE

S- BUS

DTCM0

4 KB

CDE
(TMU/ VCU)

DTCM1

Configurable

AHBT

FPU

COP

P- BUS

CPU1
S- BUS

D CACHE

C- BUS

4 KB

COP

CDE
(TMU/ VCU)

FPU
P- BUS

AHBT

ITCM DTCM0 DTCM1

COP
Mailbox

ITCM DTCM0 DTCM1

Configurable

Boot ROM
128KB

SYSC

EXTI

CPUTIM0

CPUTIM1

CPUTIM2

PWM 4

PWM 5

PWM 6

PWM 7

PWM 8

QEP2

CAP1

CAP2

CAP3

CAP4

CAP5

CAP6

CAP7

DACA

DACB

COMP1

COMP2

COMP3

COMP4

COMP5

COMP6

COMP7

SDF

SPIA

SPIB

PMBUS

FSCITX

FSCIRX

ADCA

ADCB

ADCC

CANA

CANB

LIN

UARTA

UARTB

DCCOMP

I2C

WDT

NMIWDT

APB4

APB0

APB1

DEMUX 2

GPIODATA

IN_XBAR

NVMC

DEMUX 0

APB2

FLB1-4

XBAR

Secure ROM
64KB

I CACHE

4 KB

I CACHE

4 KB

DCS

QSPI

ANALOG_SUB_SYSTEM

FACC0

FACC1

CPU1_PMC100

CPU0_PMC100

APB5

Note:

1) The red lines in the figure represent bus bridge.

2) The size of ITCM/DTCM/SRAM is configured using CFGSMS.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 3

Contents

1. Introduction .. 1

2. MDK-ARM Development Tool Chain ... 5

3. IAR EW for Arm Development Tool Chain ...19

4. Eclipse ...31

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 4

5. pyocd Adaptation for G32R501 ...46

6. Revision ..61

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 5

2. MDK-ARM Development Tool Chain

During the migration from Txx320F28004x series MCU to G32R501 series MCU, the porting of

development tools is an important link. Code Composer Studio (CCStudio) integrated

development environment (IDE) and MDK-ARM are both commonly used tools in embedded

development.

This chapter will introduce how to migrate the existing CCStudio projects to the MDK-ARM

environment, and discuss in detail the compatibility of C language and assembly code, and the

configuration of linker script files.

2.1. Simulator Support

Support of simulators by G32R501:

⚫ Geehy-Link (WinUSB), DAP Link (the firmware version is CMSIS-DAP V2 and above)

⚫ J-Link V12 (J-Link V7.94g and above)

⚫ Ulink Pro

2.2. IDE Version

Please make sure to use MDK-ARM V5.40 or higher-version IDE.

Note: The known problem with MDK 5.40/5.41 is that the function jump (press F12, and it will jump to the function

definition) and other functions during code editing cannot be used properly.

2.3. Project Operation
Note: The following operations are all performed on MDK-ARM v5.40.

2.3.1. Install Pack support

You can choose any of the following methods for installation:

1. Direct installation

⚫ Look for the file “Geehy.G32R5xx_DFP.x.x.x.pack” under the package directory of

SDK.

⚫ Double-click the file and install in the pop-up installation interface (as shown in Figure

2) according to the instructions.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 6

Figure 2 Click Install in Geehy.G32R5xx_DFP.x.x.x.pack

2. Use Pack Installer (as shown in Figure 3)

⚫ Open MDK-ARM v5.40.

⚫ In the menu bar, click “Project”->“Manage”->“Pack Installer”.

⚫ This will open a new window, displaying the available support packages.

⚫ In the new window, select "File"->"Import...".

⚫ In the file browser, try to find the file “Geehy.G32R5xx_DFP.x.x.x.pack” under the

package directory of SDK, and then select.

⚫ Click "Open" to install.

Figure 3 Import Pack Installer to Geehy.G32R5xx_DFP.x.x.x.pack

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 7

2.3.2. Open the example project

1. Start MDK-ARM v5.40.

2. Click "Project"->"Open Project" in the menu bar.

3. Browse the path of the SDK project file you provide, select the corresponding .uvprojx file,

and then click "Open".

Or after installing MDK-ARM v5.40, directly click the project file “.uvprojx file" to open it.

Note: Please complete the above steps after the Pack support installation is completed; otherwise MDK-ARM will

indicate that the chip cannot be found.

2.3.3. Project establishment

1. Start MDK-ARM:

⚫ Open MDK-ARM v5.40.

2. Create a new project:

⚫ Click "Project"->"New uVision Project" in the menu bar.

⚫ Select the path to save the project, enter the project name, and click "Save".

3. Select the MCU:

⚫ In the pop-up dialog box, select the appropriate G32R501 series MCU model, and

click "OK".

2.3.4. File import

1. Open the project view:

⚫ Make sure your new project is already open in the Project window.

2. Add an existing file:

⚫ Click "File Extensions, Books and Environment…"

Figure 4 File Extensions

⚫ Click "Source Group 1" or the folder where you want to add files, and select "Add

Files...".

⚫ In the pop-up file browser, find and select the source files to be imported (e.g. .c and .h

files), and then click "Add".

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 8

Figure 5 Add Source Files

3. New file (if needed):

⚫ To create a new source file, right-click "Source Group 1" and select "Add New Item".

⚫ Enter the file name, select the file type (e.g. C file or assembly file), and then click

"Add".

4. Configure the header file path (as shown in Figure 6):

⚫ Select "Project" ->"Options" in the menu, check "Include Paths" under the "C/C++" tab,

and ensure that all necessary library file paths have been added.

Figure 6 Add the Header File Path

2.3.5. Configure macro definition

In "Project"->"Options", select the "C/C++" tab, add the required macro definition, and configure

the corresponding compilation control.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 9

Figure 7 Configure Macro Definition

2.3.6. Compilation command control

In MDK-ARM, compilation commands can be controlled through the "Misc Controls" under the

"C/C++(AC6)" tab in the "Options for Target" window of the project attributes. Under the

"C/C++(AC6)" tab, users can set the preprocessor directives, compiler flags, and so on, refer to

the compiler command support in Table 3; for more related information, please consult the help

documentation in MDK.

Table 2 Compiler Command

Characteristic/Option

Scalar FP

half-

precision

Scalar FP

single-

precision

Scalar FP

double-

precision

MVE

integer

MVE FP

half-

precision

Custom

Datapath

Extension

(CDE) cp0

cortex-m52 Included Included
Not

included

Not

included
Included

Not

included

cortex-m52+nomve Included
Not

included
Included

Not

included
Included

Not

included

cortex-m52+nomve.fp+nofp.dp Included
Not

included
Included

Not

included
Included

Not

included

cortex-m52+nomve+nofp.dp
Not

included

Not

included
Included

Not

included
Included

Not

included

cortex-m52+nomve.fp+nofp Included
Not

included

Not

included

Not

included
Included

Not

included

cortex-m52+nopacbti Included Included
Not

included

Not

included

Not

included

Not

included

cortex-m52+nomve+nopacbti Included
Not

included

Not

included

Not

included

Not

included

Not

included

cortex-m52+

nomve.fp+nofp.dp+nopacbti
Included

Not

included

Not

included

Not

included

Not

included

Not

included

cortex-m52+

nomve+nofp.dp+nopacbti

Not

included

Not

included

Not

included

Not

included

Not

included

Not

included

cortex-m52+nomve.fp+nofp+nopacbti
Not

included

Not

included
Included

Not

included

Not

included

Not

included

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 10

Characteristic/Option

Scalar FP

half-

precision

Scalar FP

single-

precision

Scalar FP

double-

precision

MVE

integer

MVE FP

half-

precision

Custom

Datapath

Extension

(CDE) cp0

cortex-m52+cdecp0
Not

included

Not

included

Not

included

Not

included

Not

included
Included

Figure 8 Help Documentation in MDK

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 11

Figure 9 Compilation Command Control

2.3.7. Compilation optimization level settings

MDK-ARM provides multiple optimization level settings, which can be adjusted at the global,

single-file, and single-function levels:

1. Global optimization level settings: In the "Options for Target" window, select the "C/C++"

tab, and then select an appropriate optimization level from the "Optimization" drop-down

menu.

Figure 10 Global Optimization Level Settings

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 12

2. Single-file optimization level settings: Right-click a specific source file, select "Options for

File...", and then set the optimization level in the "C/C++" tab.

Figure 11 Single-file Optimization Level Settings

3. Single-function optimization level settings: Specific compiler instructions can be used for

optimization setting before the function, e.g. using __attribute__((optnone)) to declare no

optimization or use of __attribute__((optimize("O2"))) for optimization.

2.3.8. Program compilation

1. In the menu bar, click "Project" ->"Build Target" (or directly click the "Build" button on the

toolbar, or press the "F7" button).

Figure 12 Compiler Program

2. After the compilation process is completed, check for any errors or warning messages in

the output window. If there are errors, make corresponding modifications according to the

prompt

2.3.9. Program download

1. Select the simulator:

⚫ Click "Project" ->"Options" in the menu bar.

⚫ In the pop-up dialog box, select the "Debug" tab.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 13

⚫ In the "Use" drop-down menu, select the appropriate debugging simulator (e.g. Geehy-

Link, J-Link, etc.).

2. Configure the download script:

⚫ Open the project options: Select "Options for Target".

⚫ Select the downloading tool: In the "Utilities" tab, select the appropriate downloading

tool.

⚫ Load the download script: Click the "Settings" button to load the specific download

script file.

Figure 13 Select Download Script

3. Download program:

⚫ On the toolbar, click the "Download" button (small arrow icon) or select "Flash"

->"Download" from the menu (or press "F8" directly).

Figure 14 Download Program

⚫ Ensure that the target device is connected, wait for the download to be completed, and

view the output window to confirm the download status.

2.3.10. Program simulation

2.3.10.1. J-Link emulation

⚫ Open the project options: Select "Options for Target".

⚫ Select the debugger: In the "Debug" tab, choose the J-Link debugger.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 14

⚫ Add the r501_dbg.ini and JLinkSettings.JLinkScript files in the target project folder.

⚫ The JLinkSettings.JLinkScript file is a C-like scripting language used to customize

the operation of the J-Link debugger. The JLinkScript file includes basic syntax,

custom operations, API functions, and global constants (variables) from DLLs, and

its syntax is similar to that of the C language.

⚫ The r501_dbg.ini and JLinkSettings.JLinkScript files are located in

SDK/device_support/g32r501/common/Jlink/.

Figure 15 Add J-Link document

Note: The r501_dbg.ini file is different from the r501_dbg.ini file used with GEEHY LINK emulation; please make sure

to distinguish between them when in use.

4. Load the emulation script: In the "Settings" menu, click the "Load" button to load the

specific emulation script file.

图 16 J-Link emulator and emulation script.

5. Remove the download script: When using the J-Link emulator, no additional download

scripts are required. Please delete the setting for the "Init File" in the Utilities download

script.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 15

Figure 17 Remove the download script

6. Startup debugging:

⚫ After the download is complete, click the "Debug" button to start debugging the

program.

⚫ In debug mode, it can set breakpoints, view variables, perform step-by-step

execution, and other operations.

2.3.10.2. Geehy Link emulation

1. Open the project options: Select "Options for Target".

2. Select the debugger: In the "Debug" tab, choose the appropriate debugger.

3. Load the simulation script: In the "Settings" menu, click the "Load" button to load a

specific simulation script file.

Figure 18 Select the Simulator and Simulation Script

4. Start debugging:

⚫ After downloading, click the "Debug" button to start the debugging the program.

⚫ In debugging mode, such operations as setting breakpoints, viewing variables, and

single-step execution can be performed.

2.4. C Language Compatibility

When migrating the tool chains, the compatibility of C language code needs special attention.

Different compilers may have differences in file format support, built-in functions, memory

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 16

operation, and data type. To ensure that the code can be compiled and run correctly in a new

compilation environment, necessary adjustments and optimization shall be made on the

existing code.

2.4.1. File format support

Support .c/.h files.

2.4.2. Use of sizeof

Different compilers and architectures may have differences in the size of data type, so special

attention shall be paid to the results of the sizeof operator on different platforms. The following

is a size comparison of common data types on G32R501 and Txx320F28004x:

Table 3 Size Comparison of Different Data Types on G32R501 and Txx320F28004x

Data type G32R501 Txx320F28004x

char 1 1

short 2 1

int 4 1

long 4 2

long long 8 4

float 4 2

double 8 4

long double 8 4

void* 4 2

int8_t 1 1

uint8_t 1 1

int16_t 2 1

uint16_t 2 1

int32_t 4 2

uint32_t 4 2

int64_t 8 4

uint64_t 8 4

2.5. Assembly Compatibility

There may be significant differences in instruction set and assembly syntax among different

target platforms, so the existing assembly code needs to be rewritten and adapted to ensure

correct operation on the new platforms

2.5.1. File format support

AC6 is based on LLVM and Clang technology, mainly using GNU-style assembly syntax.

Assembly file formats supported by AC6:

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 17

⚫ .s file: GNU-style assembly file format.

Meanwhile, AC6 supports the use of inline assembly in C functions.

2.5.2. Assembly code format requirements

1. Single assembly file: Here is a simple assembly code example, which defines an assembly

function add, used to add two integers. The content of the file “add.s” is as follows:

 .syntax unified

 .global add

 .type add, %function

add:

 @ Function entry

 @ Parameters: r0 and r1

 @ Return value: r0

 adds r0, r0, r1 @ Add r0 and r1, store result in r0

 bx lr @ Return to calling function

 .end

2. Use inline assembly in C function: The following is an example of using inline assembly in

C function, and an inline assembly function add_inline is defined to add two integers:

// Inline assembly function

static inline int add_inline(int a, int b) {

 int result;

 __asm volatile (

 "adds %0, %1, %2\n"

 : "=r" (result) // Output operand

 : "r" (a), "r" (b) // Input operands

 : "cc" // Clobbered registers

);

 return result;

}

2.6. Linker Script Files

The linker script files are used to define the memory layout and section allocation of the

program. In the migration process, it is necessary to use linker script files in the corresponding

format according to different target platforms and development environments. The G32R501

uses linker script files in the ".sct" format in the MDK development environment, which comply

with Arm Company's specifications.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 18

Differences in linker script files

⚫ File format:

- The G32R501 uses linker script files in the ".sct" format, which comply with Arm

Company's specifications.

- Txx320F28004x uses the linker script files in ".CMD" format, which comply with the

company's specifications.

⚫ Memory layout and section allocation:

- The “.sct” file of G32R501 arranges memory allocation by defining the load region and

execution region.

- The “.CMD” file of Txx320F28004x arranges memory allocation by defining the

Memory section (MEMORY) and section allocation (SECTIONS).

2.7. RAM Operation

The Txx320F28004x compiler supports the Progma syntax, which tells the compiler that if a

specific function, target file, or the attributes of a section of code are modified, such as

CODE_SECTION, a Section is assigned to a certain function, and its usage is as follows:

#pragma CODE_SECTION(funcA, "codeA")

G32R501 can implement the same function using the following statement:

__attribute__((section("xxx")))

Where, xxx represents the SECTION name which a certain function or global variable is

assigned. During use, users can refer to the following format:

__attribute__((section("itcm.ramfunc"))) void SysCtl_delay(uint32_t count){}

You only need to specify the attributes when defining functions and variables.

Note: When using "__attribute__((section("itcm.ramfunc")))", a declaration of the "itcm.ramfunc" field in the .sct

(chained footstep file) is required: .ANY (itcm.ramfunc)

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 19

3. IAR EW for Arm Development Tool Chain

3.1. Simulator Support

Please refer to Chapter 2.1.

3.2. IDE Version

Please make sure to use IAR EW for Arm 9.60.2 or higher-version IDE.

3.3. Install the Chip Support

Before officially using IAR EW for Arm to develop G32R5 series MCU, please install the chip

support package first. The path for chip support

is: ..\utilities\G32R5xx_AddOn\G32R5xx_AddOn_vx.x.x.exe

1. Open G32R5xx_AddOn_vx.x.x.exe with the administrator rights and go to the interface for

selecting the path to install the chip support. This path is the installation path for IAR EW

for Arm, e.g. the example: D:\iar\ewarm-9.60.2\.

Figure 19 Installation of Chip Support on G32R5xx_AddOn_vx.x.x.exe

If the software cannot obtain the IAR EW for Arm installation path on the computer, please

manually select it.

2. After selecting the correct path and adding the chip support, open IAR EW for Arm, select

"New project", and in the chip selection tab, the G32R5 series MCU list can be seen.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 20

Figure 20 G32R5 Series MCU List

3.4. Project Operation

3.4.1. Open the example project

1. Start IAR EW for Arm 9.60.2.

2. Click "File" ->"Open Workspace..." in the menu bar.

3. Browse the path of the SDK project file you provide, select the corresponding .eww file,

and then click "Open".

Or, after installing IAR EW for Arm 9.60.2, directly click the project file ".eww file" to open it.

Note: Please complete the above steps in Section 3.3 Install Chip Support; otherwise, the IAR EW for Arm will

prompt that the chip cannot be found.

3.4.2. Project establishment

1. Start IAR EW for Arm:

⚫ Open IAR EW for Arm 9.60.2.

2. Create a new project:

⚫ Click "Project"->"Create New Project" in the menu bar.

⚫ Select "Tool chain" as "Arm".

⚫ Select the "main" under "C" and then click "OK".

⚫ Select the path to save the project, enter the project name, and click "Save".

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 21

Figure 21 Create New Project

3. Select the MCU:

⚫ Right-click the project name and select "Options...".

⚫ Select "Device" under "Target" in "General Options".

⚫ Select the appropriate G32R501 series MCU model, and click "OK".

Figure 22 Select MCU

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 22

3.4.3. File import

1. Open the project view:

⚫ Make sure your new project is already open in the Project window.

2. Add an existing file:

⚫ Right-click the project name, select "Add", and then select "Add Files".

Figure 23 File Extensions

⚫ In the pop-up file browser, find and select the source files to be imported (e.g. .c and .h

files), and then click "Add".

3. New file (if needed):

⚫ If a new source file needs to be created, click the "File" on the toolbar and select "New

File".

⚫ A file will appear in the IDE; press "CTRL+S" to save the file.

⚫ Enter the file name, select the file type (e.g. C file or assembly file), and then refer to

the steps for “Adding files”.

3.4.4. Configure header file path and macro definition

1. Right-click the project name and select "Options...".

2. Select “Preprocessor” under the “C/C++Compiler” tab.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 23

Figure 24 Configure Header File Path and Macro Definition

3. Add all necessary library file paths in “Additional include directories: (one per line)”.

4. In Defined Symbols: The macro definition required for (one per line).

3.4.5. Compilation optimization level settings

IAR EW for Arm provides multiple optimization level settings, which can be adjusted at the

global, single-file, and single-function levels:

1. Global optimization level settings: Open the "C/C++ Compiler" tab and then select the

appropriate optimization level in "Optimizations".

Figure 25 Global Optimization Level Settings

2. Single-file optimization level settings: Right-click a specific source file, select "Options...",

check "Override inherited settings", and then select the appropriate optimization level in

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 24

"Optimizations".

Figure 26 Single-file Optimization Level Settings

3. Single-function optimization level settings: Specific compiler instructions can be used

before the function to set the optimization level, e.g. declaring no optimization using

Pragma("optimize=none").

3.4.6. Program compilation

1. In the menu bar, click "Project" ->"Make" (or directly click the "Make" button on the toolbar,

or press the "F7" button).

Figure 27 Compiler Program

2. After the compilation process is completed, check for any errors or warning messages in

the output window. If there are errors, make corresponding modifications according to the

prompt

3.4.7. Program simulation and download

1. Select the simulator:

⚫ Right-click the project name and select "Options...".

⚫ In the pop-up dialog box, select the "Debugger" tab.

⚫ In the "Driver" drop-down menu under the "Setup" tab, select the appropriate

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 25

debugging simulator ((e.g. Geehy-Link (CMSIS DAP), J-Link, etc.).

Figure 28 Select the Simulator

2. Configure simulation instructions:

As the G32R5 series MCU supports DCS encryption, corresponding instructions need to be

configured for normal simulation.

⚫ Right-click the project name and select "Options...".

⚫ In the pop-up dialog box, select the "Debugger" tab.

⚫ Check "Use command line options" under the "Extra Options" tab, and add instructions

to "Command line options"

- “--macro_param _DCS_ZONE1_CSM0=0xFFFFFFFF”, setting the DCS key.

- “--macro_param _SET_PC_BOOTADDR=0x08000000”, setting the boot address

Figure 29 Configure Simulation Instructions

3. Erase and download programs:

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 26

⚫ On the toolbar, click "Project" and select "Download" from the menu

- “Erase memory": Erases the chip Flash.

- “Download active application”: download the program of this project to the chip.

- “Download file...": Download other programs to the chip

4. Program simulation:

⚫ Click the "Download and Debug" button on the toolbar or press "Ctrl+D" to start the

simulation.

Figure 30 IAR Download and Debug

⚫ In debugging mode, such operations as setting breakpoints, viewing variables, and

single-step execution can be performed.

5. Problems in Debugging

⚫ During debugging, the Flash content in the Memory window does not update.

Reason: The AccType of the Flash corresponding Memory region in the ddf (device

description file) is set to "R", which means the debugger has read-only access to the

Flash and cannot modify its content. Therefore, the debugger will not update the

values of the corresponding Memory region during the debugging process.

Figure 31 ddf file (Excerpt)

Solution:

1) Enable “Disable Debugger Cache”

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 27

Figure 32 Disable Debugger Cache

2) Change the Cache Type of the Flash corresponding Memory region to RAM

Click on Memory Configuration to enter the Memory Configuration window and modify the

Cache Type.

Figure 33 Cache type

3) Modify the AccType of the Flash corresponding Memory region in the ddf file to RW.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 28

Figure 34 ddf file AccType

More detail: 调试时 Memory 窗口中 Flash 内容不更新

3.5. C Language Compatibility

Please refer to Chapter 2 "C Language Compatibility".

3.6. Assembly Compatibility

There may be significant differences in instruction set and assembly syntax among different

target platforms, so the existing assembly code needs to be rewritten and adapted to ensure

correct operation on the new platforms

3.6.1. File format support

IAR Embedded Workbench uses the specific IAR assembly syntax. Assembly file formats

supported:

⚫ .s file: IAR-style assembly file format.

Meanwhile, it supports the use of inline assembly in C functions.

3.6.2. Assembly code format requirements

⚫ Single assembly file: Here is a simple assembly code example, which defines an assembly

function add, used to add two integers. The content of the file “add.s” is as follows:

 SECTION .text:CODE ; Define code section

 PUBLIC add ; Declare global symbol

http://www.geehy.com/
https://mp.weixin.qq.com/s/9LAEDCom_MasrEeEewGdug

Document No.: AN1126

www.geehy.com Page 29

add:

 ; Function entry

 ; Parameters: r0 and r1

 ; Return value: r0

 ADD r0, r0, r1 ; Add r0 and r1, store result in r0

 BX lr ; Return to calling function

 END

⚫ Use inline assembly in C function: The following is an example of using inline assembly in

C function, and an inline assembly function add_inline is defined to add two integers:

// Inline assembly function

static inline int add_inline(int a, int b) {

 int result;

 __asm volatile (

 "adds %0, %1, %2\n"

 : "=r" (result) // Output operand

 : "r" (a), "r" (b) // Input operands

 : "cc" // Clobbered registers

);

 return result;

}

3.7. Linker Script Files

The linker script files are used to define the memory layout and section allocation of the

program. In the migration process, it is necessary to use linker script files in the corresponding

format according to different target platforms and development environments. G32R501 uses

the linker script files in the ".icf" format in the IAR EW for Arm development environment, which

comply with IAR Company's specifications.

Differences in linker script files

⚫ File format:

- The G32R501 uses linker script files in the ".icf" format, which comply with IAR

Company's specifications.

- Txx320F28004x uses the linker script files in ".CMD" format, which comply with the

company's specifications.

⚫ Memory layout and section allocation:

- The ".icf" files of G32R501 allocate memory attributes by defining different "regions"

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 30

and their attributes.

- The “.CMD” file of Txx320F28004x arranges memory allocation by defining the

Memory section (MEMORY) and section allocation (SECTIONS).

3.8. RAM Operation

Please refer to Chapter 2.7.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 31

4. Eclipse

4.1. Emulator Support

⚫ Geehy-Link (WinUSB), DAP Link (firmware version CMSIS-DAP V2 or above)

⚫ J-Link V12 (J-Link V7.94g or above)

4.2. IDE Version

Ensure the use of Eclipse 4.35 or a newer version of the IDE.

4.3. LLVM_For_ARM_Toolchain

1. Download the LLVM_For_ARM_Toolchain compiler

⚫ From the LLVM_For_ARM_Toolchain repository: https://github.com/ARM-

software/LLVM-embedded-toolchain-for-Arm, download the LLVM-ET-Arm-19.1.1-

Windows-x86_64 compiler.

2. Add Environment Variables

⚫ Extract the downloaded compressed package (example extraction path:

D:\desktop\clang\utilities\LLVM-ET-Arm-19.1.1-Windows-x86_64)

⚫ Add the "bin" folder from the extracted directory to the system environment variable.

Figure 35 Add the system environment variable

4.4. GDB Service

It is recommended to use the arm-none-eabi-gdb.exe provided by Arm. The version of arm-

none-eabi-gdb.exe used in the example is 14.2.

4.5. Project Operations

4.5.1. Opening the Example Project

1. Run Eclipse 4.35.

http://www.geehy.com/
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm
https://github.com/ARM-software/LLVM-embedded-toolchain-for-Arm

Document No.: AN1126

www.geehy.com Page 32

2. Click "File" -> "Import..." -> "General" -> "Existing Project into Workspace" in the menu

bar.

Figure 36 Import project

3. Click "Select root directory", navigate to the path of the SDK project file you provided,

select the corresponding project folder, and then click "Finish".

Note: Please complete the above steps after finishing the LLVM compilation configuration in section 4.3.

4.5.2. Project Creation

1. Run Eclipse:

⚫ Open Eclipse 4.35.

2. Create a New Project:

⚫ Under "File->New," select to create a new C/C++ Project, and choose C Managed

Build.

⚫ Enter the project name, configure the project type, and it is recommended to place the

project under the Project directory. Configure the toolchain, selecting Arm Cross GCC

as the toolchain.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 33

Figure 37 Configure project

⚫ If the Arm Toolchains in the Eclipse IDE are correctly configured, the path will be

automatically selected here. If not properly configured, you can click Browse to select

the corresponding absolute path.

Figure 38 Set Arm Toolchains Path

⚫ Click “Finish”, completed setting Project.

4.5.3. File Import

1. Right-click on the project folder to create a virtual folder.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 34

Figure 39 New file

2. Add files:

⚫ Select the folder, right-click and choose the Import option to directly import files.

Figure 40 Import file

⚫ When importing files, select "File System" as the import method. In the pop-up file

path selection dialog, choose the path of the files to be imported, then check the

files you need to import.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 35

Figure 41 Select file

3. New file (If needed):

⚫ If you need to create a new source file, click "File" -> "New" and select the source

file to create.

⚫ - Choose the folder and filename for the new source file.\

4.5.4. Compilation Configuration

1. Right-click on the project name and select "Properties".

2. Select the "External builder" configuration:

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 36

Figure 42 External builder

3. Under the "C/C++ Build" tab, select "Settings" -> "Tool Settings" -> "Target Processor"

⚫ Set all dropdown configuration items to default, then manually add the command

line: “--target=armv81m-none-eabi -mcpu=cortex-m52 -mfpu=none -fno-

exceptions -fno-rtti -lcrt0-semihost –lsemihost” (These parameters can be

modified according to the actual chip specifications.)

Figure 43 Target Processor

4. Under the "C/C++ Build" tab, select "Settings" -> "Tool Settings" -> "GNU Arm Cross C

Compiler" -> "Preprocessor"

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 37

Figure 44 Add Macro Definitions

5. Under the "C/C++ Build" tab, select "Settings" -> "Tool Settings" -> "GNU Arm Cross C

Compiler" -> "Includes".

Figure 45 Configure head file path

6. Under the "C/C++ Build" tab, select "Settings" -> "Tool Settings" -> "GNU Arm Cross C

Linker" -> "General".

Figure 46 Add link file

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 38

7. Under the "C/C++ Build" tab, select "Settings" -> "Tool Settings" -> "GNU Arm Cross C

Linker" -> "Libraries".

Figure 47 Add libraries

8. Configure “ToolChain”.

Figure 48 Configure ToolChain

1) Use the built-in clang compiler from llvm.

2) Built-in tools from the llvm toolchain.

3) Use the built-in make compiler from xpack.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 39

9. Configure "Build Step":

⚫ Under the "C/C++ Build" tab, select "Settings" -> "Build Step" -> "Post-build steps"

-> "Command".

⚫ Add the command: `llvm-objcopy -O binary "${ProjName}.elf" "${ProjName}.bin";

llvm-objdump -D "${ProjName}.elf" > "${ProjName}.dump"`.

Figure 49 Build Step

4.5.5. Compilation Optimization Level Settings

Eclipse provides multiple optimization level settings that can be adjusted at the global, single-

file, and single-function levels:

1. Global Optimization Level Setting: Under the "C/C++ Build" tab, select "Settings" -> "Tool

Settings" -> "Optimization" -> "Optimization Level".

Figure 50

2. Single-Function Optimization Level Setting: Specific compiler directives can be used before

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 40

functions to set optimization levels, such as using “_Pragma("optimize=none")” to declare

no optimization.

4.5.6. Program Compilation

1. Click on **Project**, then select **Build Project** to compile the current project.

Note: Using **Build Project** only compiles the current project, while **Build All** compiles all projects in the current

workspace.

Figure 51 Program Compilation

Note: Before compiling, be sure to save the current project. Otherwise, the compilation may be based on the last saved

version rather than the latest modifications. To ensure compilation accuracy, perform a **Clean** operation on the project

after making changes, then proceed with compilation. After compilation is complete, corresponding.elf, .hex, and .bin files

will be generated.

2. Wait for the compilation process to complete and check the output window for any error or

warning messages. If errors are present, make the necessary corrections based on the

prompts.

4.5.7. Program Simulation and Download

4.5.7.1. J-Link Simulation

1. Open the Debug Configuration Interface

⚫ In the project, click **Run** in the menu bar, then select **Debug Configurations** from

the pop-up options to enter the Debug configuration interface.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 41

Figure 52 Debug configuration interface

⚫ In the new window, select “GDB SEGGER J-Link Debugging”, right-click, and choose

“New Configuration” to create a new simulation configuration.

Figure 53 New simulation J-Link configuration

2. Configure the Main Tab

⚫ Name the current simulation configuration at the top.

⚫ Click **Browse...** to select the project corresponding to the current simulation

configuration.

⚫ Choose the corresponding simulation ELF file (e.g., `G32R501\led_ex1_blinky.elf`).

Relative paths (relative to the project file) are used here, but absolute paths are also

supported.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 42

Figure 54 Configure Main

3. Configure the Debugger Tab

⚫ Select the corresponding simulation chip (e.g., G32R501).

⚫ Choose the GDB service—it is recommended to use the Arm-provided arm-none-eabi-

gdb.exe.

Figure 55 Debugger Tab

4. Configure the Startup Tab

⚫ Add **DCS KEY** (must match the chip-side configuration) in the **Initialization

Commands** and **Run/Restart Commands** fields.

⚫ The content added in both fields should be identical.

set {unsigned int}0x50024020 = 0xFFFFFFFF

set {unsigned int}0x50024024 = 0xFFFFFFDC

set {unsigned int}0x50024028 = 0xFFFFFFFF

set {unsigned int}0x5002402C = 0xFFFFFFFF

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 43

set {unsigned int}0x500240A0 = 0xFFFFFFFF

set {unsigned int}0x500240A4 = 0xFFFEDFFF

set {unsigned int}0x500240A8 = 0xFFFFFFFF

set {unsigned int}0x500240AC = 0xFFFFFFFF

set $t0 = *(unsigned int *)0x08000000

set $sp=$t0

set $t1 = *(unsigned int *)0x08000004

set $pc=$t1

set $xpsr=$xpsr|(1<<24)

5. Configure the SVD Tab

Figure 56 Configure SVD path

6. Finally, click the **Apply** button at the bottom right of the tab to save all configurations.

4.5.7.2. GEEHY LINK Simulation

Use Geehy-Link (WinUSB) to download and debug the project, and use pyocd to download and

simulate the project. For details, refer to pyocd 适配 G32R501.

4.6. C Language Compatibility

Refer to Section 2 "C Language Compatibility".

4.7. Assembly Compatibility

The instruction sets and assembly syntax of different target platforms may vary significantly.

Existing assembly code may need to be rewritten and adapted to ensure correct operation on

new platforms.

4.7.1. File Format Support

Eclipse uses a specific GCC assembly syntax. The assembly syntax of GCC (GNU Assembler,

abbreviated as GAS) is consistent with MDK (Keil's ARM assembler, i.e., ARMASM) in terms of

core instruction sets, but there are significant differences in pseudo-instructions, syntax formats,

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 44

and symbol definitions. Below is a detailed comparison.

⚫ .S files: GCC-style assembly file format.

Additionally, it supports inline assembly within C functions.

4.7.2. Assembly Coding Format Requirements

⚫ Single assembly file: Here is a simple example of assembly code that defines an assembly

function `add` to add two integers. The content of the file "add.s" is as follows:

.section .text //Define code section

.global add // Declare global symbol

add:

 //Function entry

 //Parameters: r0 and r1

 //Return value: r0

add r0, r0, r1 // Add r0 and r1, store result in r0

bx lr // Return to calling function

⚫ Using inline assembly in C functions: The following is an example of using inline assembly

in a C function, defining an inline assembly function add_inline to add two integers:

// Inline assembly function

static inline int add_inline(int a, int b) {

 int result;

 asm volatile (

 "ADD %0, %1, %2"

 : "=r" (result)

 : "r" (a), "r" (b)

 :

);

 return result;

}

4.8. Linker Script Files

Linker script files are used to define the memory layout and section allocation of a program.

During the migration process, it is necessary to use linker script files in the appropriate format

according to the target platform and development environment. The G32R501 uses ".ld" format

linker script files under the Eclipse development environment, adhering to Eclipse's

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 45

specifications.

Differences in Linker Script Files

⚫ File Format:

- The G32R501 uses ".ld" format linker script files.

- The Txx320F28004x uses ".CMD" format linker script files, following its company's

specifications.

⚫ Memory Layout and Section Allocation:

- The ".ld" file of the G32R501 allocates memory attributes by defining different

"MEMORY" and its "SECTIONS."

- The ".CMD" file of the Txx320F28004x arranges memory allocation by defining

memory segments (MEMORY) and section allocations (SECTIONS).

4.9. RAM Operating

Refer to Chapter 2.7.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 46

5. pyocd Adaptation for G32R501

5.1. Background

To enable customers to perform operations such as program downloading and debugging for

the G32R501 in an open-source environment, the G32R501 series MCUs need to support

PyOCD.

5.2. PyOCD Adaptation Modifications

The current PyOCD (https://github.com/pyocd/pyOCD/releases/tag/v0.36.0) release version is

0.36, which does not support the M52 core chips or the G32R501 chip. Source code

modifications are required to enable support.

5.2.1. Adding M52 Core Support

1. Add M52 core support in PyOCD. The main files to be modified are:

⚫ pyocd\coresight\component_ids.py

 Under class CmpInfo(NamedTuple):, add:

 # Designer |Component Class |Part |Type |Archid |Name |Product

|Factory

 (ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x31, 0x0a31) : CmpInfo('MTB', 'Star-

MC2', None),

 (ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x43, 0x1a01) : CmpInfo('ITM', 'Star-

MC2', ITM.factory),

 (ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x00, 0x1a02) : CmpInfo('DWT', 'Star-

MC2', DWTv2.factory),

 (ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x00, 0x1a03) : CmpInfo('BPU', 'Star-

MC2', FPB.factory),

 (ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x14, 0x1a14) : CmpInfo('CTI', 'Star-

MC2', None),

 (ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x00, 0x2a04) : CmpInfo('SCS', 'Star-

MC2', CortexM_v8M.factory),

 (ARM_CHINA_ID, CORESIGHT_CLASS, 0xD24, 0x13, 0x4a13) : CmpInfo('ETM', 'Star-

MC2', None),

 (ARM_CHINA_ID, CORESIGHT_CLASS, 0x132, 0x11, 0) : CmpInfo('TPIU', 'Star-

MC2', TPIU.factory),

http://www.geehy.com/
https://github.com/pyocd/pyOCD/releases/tag/v0.36.0

Document No.: AN1126

www.geehy.com Page 47

Figure 57 Modified component_ids.py

⚫ pyocd\coresight\core_ids.py

1) Add the core ID after # CPUID PARTNO values

ARM_China_StarMC2 = 0xD24

2) Add the core name after CORE_TYPE_NAME: Dict[Tuple[int, int], str]

(CPUID_ARM_CHINA, ARM_China_StarMC2): "Star-MC2",

Figure 58 Modiffied core_ids.py

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 48

5.2.2. Add G32R501 Chip Support

1. Add the G32R501 download algorithm support file in pyocd\target\builtin:

target_G32R501xx.py. This file has been added in

SDK/device_support/g32r501/common/pyOCD/target_G32R501xx.py.

2. To add G32R501 support, include the following in pyocd\target\builtin__init__.py:

 from . import target_G32R501xx

'g32r501dxx': target_G32R501xx.G32R501Dxx,

'g32r501xx': target_G32R501xx.G32R501xx,

Figure 59 Modified __init__.py

5.2.3. pyocd_user.py

pyocd supports parsing the corresponding script using "--script=<path>" to add custom

commands and additional operations before or after connection.

The pyocd_user.py file has been added in

SDK/device_support/g32r501/common/pyOCD/target_G32R501xx.py.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 49

5.2.3.1. DCS Key

Due to the features of the G32R501, the chip includes DCS functionality, requiring the

transmission of a key to the aforementioned target_G32R501xx.py during the connection

process for use during the download operation.

If users need to modify the DCS key, they can directly edit NEW_DECRYPT_KEYS:

 NEW_DECRYPT_KEYS = [

 (0x50024020, 0xFFFFFFFF),

 (0x50024024, 0xFFFFFFDC),

 (0x50024028, 0xFFFFFFFF),

 (0x5002402C, 0xFFFFFFFF),

 (0x500240A0, 0xFFFFFFFF),

 (0x500240A4, 0xFFFEDFFF),

 (0x500240A8, 0xFFFFFFFF),

 (0x500240AC, 0xFFFFFFFF),

]

Note: The front part is the write address, and the back part is the DCS KEY content to be written.

5.2.3.2. Connection Phase

The connection phase requires the following steps:

1. Perform DCS decryption

2. Initialize the CPU

The above operations are implemented in “def did_connect(board) -> None:”.

5.3. pyocd Installation

5.3.1. Windows

5.3.1.1. Install Python

pyocd 支持需要在 python 环境下，请至 python 官网（https://www.python.org）下载最新的

http://www.geehy.com/
https://www.python.org/

Document No.: AN1126

www.geehy.com Page 50

python 安装包进行安装。

注意：安装完成后，请确保将 Python 添加到系统的 PATH 环境变量中，以便在命令行中使用。

验证：使用 Win+R 键，输入 CMD，在命令行窗口上输入：python，然后回车。显示已安装的

Python 版本号等内容，并进入 Python 的交互式命令行（REPL）中。如需退出输入 exit() 或

quit()，然后按下回车键。

Figure 60 Python install check

5.3.1.2. Install pyocd

pyocd is a component package for Python that supports online installation (online installation is

recommended due to various dependency packages that can be resolved during the process).

The installation method is as follows:

1. Install using the pip command:

Figure 61 Install pyocd

Note: After installation, add PyOCD’s installation path to the system’s PATH environment variable for command-line usage.

For example:C:\Users\Geehy\AppData\Local\Programs\Python\Python313\Scripts

2. Verify the installation by pressing **Win + R**, entering **CMD**, and running the following

command in the terminal: pyocd -h, this will display the command help.

Figure 62 pyocd install check

5.3.2. Ubuntu

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 51

5.3.2.1. Installing Python

1. Ubuntu usually comes with Python pre-installed. You can check the Python and pip

versions by running the following command in the terminal:

python --version

2. If Python or pip is not installed, use the following command to install them:

sudo apt update

sudo apt install python3 python3-pip

5.3.2.2. python3-venv

Some Ubuntu systems come with externally managed Python3 environments, which prevent

direct installation of packages in the global environment using pip. To avoid this issue, you can

use Python's built-in venv module to create a virtual environment.

1. Use the following command to install the python3-venv package:

sudo apt install python3-venv

2. Use the following command to create a virtual environment (assuming you name it "venv"):

python3 -m venv venv

3. Use the following command to activate the virtual environment:

⚫ Activate the virtual environment to install packages within it.

source venv/bin/activate

⚫ To deactivate the virtual environment later, use the following command:

deactivate

5.3.2.3. Install pyocd

1. In the activated virtual environment, install pyOCD using pip:

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 52

pip install pyocd

2. Verify the installation results

pyocd --version

3. Query the installation location of pyocd (for subsequent modification of pyocd source code)

pip show pyocd

5.3.2.4. USB Permissions for pyocd

If pyocd cannot access the debugger under a regular user, consider adding appropriate

permissions for the current user. Use udev rules to ensure USB device access without sudo.

Follow these steps:

1. Create a new rule file by executing the following command in the terminal to create a new

udev rule file (e.g., named 99-pyocd.rules):

sudo nano /etc/udev/rules.d/99-pyocd.rules

2. Add the following content to the file (the Geehy-Link device ID is 314B):

SUBSYSTEM=="usb", ATTR{idVendor}=="314b", MODE="0666"

In the nano editor, press Ctrl + O to save the file, then press **Enter** to confirm. Next, press

Ctrl + X to exit the editor.

3. After saving the file, reload the udev rules.

sudo udevadm control --reload-rules

sudo udevadm trigger

4. Verify whether pyocd can correctly recognize Geehy-Link.

pyocd list

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 53

Figure 63 Serial number of the emulator connected to Ubuntu

5.3.3. Modify Replacement Item Content

To support G32R501, please refer to Chapter 5.2 to modify the downloaded pyocd content.

To verify whether g32r501 support has been successfully added, press Win+R, enter CMD, and

in the command prompt window, input: “pyocd list –targets”. This will display all supported

chips. Check if "g32r501xx" is listed among them.

Figure 64 Support chips list

5.4. Command Line Usage

pyocd supports operation via the CMD command line. The following steps outline the usage

(ensure pyocd has been added to PATH before use):

1. Connect the board or debugger to the chip and then to the PC.

2. In the working directory, add a `pyocd.yaml` configuration file. This file specifies the default

target chip, connection method, and other settings. Users can refer to the official

documentation: https://pyocd.io/docs/configuration.html.

For the G32R501, the reference `pyocd.yaml` configuration file is located at

`SDK/device_support/g32r501/common/pyOCD/target_G32R501xx.py`.

3. In the working directory, add a `pyocd_user.py` file. Refer to Chapter 2.3 for its content.

4. Open CMD in the working directory and enter: `pyocd commander`. You can then input

relevant commands in the command window to perform corresponding operations.

http://www.geehy.com/
https://pyocd.io/docs/configuration.html

Document No.: AN1126

www.geehy.com Page 54

Figure 65 pyocd commander

5.5. Integration with Eclipse

Currently, Eclipse+pyocd has version requirements for Eclipse. It is recommended to use

Eclipse 202503.

Additionally, it is advised to configure the pyocd path globally in Eclipse (as some computers

may encounter issues with Eclipse retrieving the PATH). The steps are as follows:

1. Right-click on the "Windows" menu bar to display all configurations.

2. Select "Preference" from the displayed configurations.

3. In the new window, navigate to the sub-options under the "MCU" option.

4. Select the sub-option "Global pyOCD Path."

5. On the right side, choose the directory where the corresponding pyocd.exe is located.

6. Finally, click "Apply and Close."

Figure 66 Global pyOCD Path Step 1-2

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 55

Figure 67 Global pyOCD Path Step 3-6

5.5.1. Single-core Simulation Configuration

After importing the project into Eclipse and ensuring it compiles without errors, follow the steps

below to configure the simulation tab.

1. Create a New Simulation Configuration

1) Left-click the Debug icon to display the Debug configurations.

2) Select the displayed "Debug Configurations..." option.

3) In the new window, choose "GDB PyOCD Debugging" and right-click.

4) Select "New Configuration" to proceed with the simulation configuration.

Figure 68 New Configuration Step1-2

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 56

Figure 69 New Configuration Step 3-4

2. Configure the Main Tab

1) Name the current simulation configuration at the top.

2) Select "Browse..." to choose the project corresponding to the current simulation

configuration.

3) Select the corresponding simulation ELF file, e.g., `G32R501\led_ex1_blinky.elf`. The

example uses a relative path to the project file, but absolute paths are also supported.

Figure 70 Configure Main

3. Configure the Debugger Tab

1) Select the Geehy-Link emulator to be used. The characters in parentheses represent

the emulator's serial number.

2) Choose the corresponding simulation chip, e.g., `Geehy > G32R501xx (g32r501xx)`.

3) For the reset mode, select "Software (SYSRESETREQ)."

4) For the configuration file, select the previously prepared `pyocd_user.py`. It is

recommended to use an absolute path without Chinese characters or spaces.

5) For the GDB service, it is recommended to use the Arm-provided `arm-gnu-toolchain-

14.2.rel1\bin\arm-none-eabi-gdb.exe`.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 57

Figure 71

4. Configure the Startup Tab

1) Add the DCS KEY in the Initialization Commands and Run/Restart Commands

sections (this needs to correspond with pyocd_user.py and the chip side).

2) The content added in both sections should be consistent. Refer to the following:

set {unsigned int}0x50024020 = 0xFFFFFFFF

set {unsigned int}0x50024024 = 0xFFFFFFDC

set {unsigned int}0x50024028 = 0xFFFFFFFF

set {unsigned int}0x5002402C = 0xFFFFFFFF

set {unsigned int}0x500240A0 = 0xFFFFFFFF

set {unsigned int}0x500240A4 = 0xFFFEDFFF

set {unsigned int}0x500240A8 = 0xFFFFFFFF

set {unsigned int}0x500240AC = 0xFFFFFFFF

set $t0 = *(unsigned int *)0x08000000

set $sp=$t0

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 58

set $t1 = *(unsigned int *)0x08000004

set $pc=$t1

set $xpsr=$xpsr|(1<<24)

Figure 72 Configure Startup

5. Finally, click the "Apply" button at the bottom right corner of the tab to apply all

configuration items.

5.5.2. Dual-Core Emulation Configuration

For dual-core emulation configuration, please refer to the 《AN1128_G32R501 Dual-Core

Emulation Guide》.

5.5.3. Program Fails to Run After Exiting Emulation in Ubuntu

5.5.3.1. Cause

In Ubuntu, Eclipse terminates the current thread before arm-none-eabi-gdb sends "resuming

http://www.geehy.com/
AN1128_G32R501 Dual-core Emulation Guide V1.1.pdf
AN1128_G32R501 Dual-core Emulation Guide V1.1.pdf

Document No.: AN1126

www.geehy.com Page 59

core 0 [cortex_m]", preventing the chip from resetting properly.

5.5.3.2. Solution

Refer to the dual-core emulation configuration and start the pyOCD gdbserver solution in the

terminal.

Start pyOCD gdbserver in the terminal:

Figure 73 Run pyOCD gdbserver

Eclipse Debugger Tab Configuration:

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 60

Figure 74

Note: The terminal path used to start the pyOCD gdbserver should include the single-core pyocd.yaml file.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 61

6. Revision

Table 4 Document Revision History

Date Version Change History

January 2025 1.0 New

April 2025 1.1 Add Chapter 2.3.10.1, 4, 5

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 62

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter

referred to as “Geehy”). The contents in this document are protected by laws and regulations of

trademark, copyright and software copyright. Geehy reserves the right to make corrections and

modifications to this document at any time. Read this document carefully before using Geehy

products. Once you use the Geehy product, it means that you (hereinafter referred to as the

“users”) have known and accepted all the contents of this document. Users shall use the Geehy

product in accordance with relevant laws and regulations and the requirements of this

document.

1. Ownership

This document can only be used in connection with the corresponding chip products or

software products provided by Geehy. Without the prior permission of Geehy, no unit or

individual may copy, transcribe, modify, edit or disseminate all or part of the contents of this

document for any reason or in any form.

The “极海” or “Geehy” words or graphics with “®” or “TM” in this document are trademarks

of Geehy. Other product or service names displayed on Geehy products are the property of

their respective owners.

2. No Intellectual Property License

Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users

explicitly or implicitly due to the sale or distribution of Geehy products or this document.

If any third party’s products, services or intellectual property are involved in this document,

it shall not be deemed that Geehy authorizes users to use the aforesaid third party’s products,

services or intellectual property. Any information regarding the application of the product, Geehy

hereby disclaims any and all warranties and liabilities of any kind, including without limitation

warranties of non-infringement of intellectual property rights of any third party, unless otherwise

agreed in sales order or sales contract.

3. Version Update

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 63

Users can obtain the latest document of the corresponding models when ordering Geehy

products.

If the contents in this document are inconsistent with Geehy products, the agreement in the

sales order or the sales contract shall prevail.

4. Information Reliability

The relevant data in this document are obtained from batch test by Geehy Laboratory or

cooperative third-party testing organization. However, clerical errors in correction or errors

caused by differences in testing environment may occur inevitably. Therefore, users should

understand that Geehy does not bear any responsibility for such errors that may occur in this

document. The relevant data in this document are only used to guide users as performance

parameter reference and do not constitute Geehy’s guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and

effectively verify and test the applicability of Geehy products to confirm that Geehy products

meet their own needs, corresponding standards, safety or other reliability requirements. If

losses are caused to users due to user’s failure to fully verify and test Geehy products, Geehy

will not bear any responsibility.

5. Legality

USERS SHALL ABIDE BY ALL APPLICABLE LOCAL LAWS AND REGULATIONS WHEN

USING THIS DOCUMENT AND THE MATCHING GEEHY PRODUCTS. USERS SHALL

UNDERSTAND THAT THE PRODUCTS MAY BE RESTRICTED BY THE EXPORT, RE-

EXPORT OR OTHER LAWS OF THE COUNTRIES OF THE PRODUCTS SUPPLIERS,

GEEHY, GEEHY DISTRIBUTORS AND USERS. USERS (ON BEHALF OR ITSELF,

SUBSIDIARIES AND AFFILIATED ENTERPRISES) SHALL AGREE AND PROMISE TO ABIDE

BY ALL APPLICABLE LAWS AND REGULATIONS ON THE EXPORT AND RE-EXPORT OF

GEEHY PRODUCTS AND/OR TECHNOLOGIES AND DIRECT PRODUCTS.

6. Disclaimer of Warranty

THIS DOCUMENT IS PROVIDED BY GEEHY "AS IS" AND THERE IS NO WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, TO

THE EXTENT PERMITTED BY APPLICABLE LAW.

http://www.geehy.com/

Document No.: AN1126

www.geehy.com Page 64

GEEHY'S PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED FOR

USE AS CRITICAL COMPONENTS IN MILITARY, LIFE-SUPPORT, POLLUTION CONTROL,

OR HAZARDOUS SUBSTANCES MANAGEMENT SYSTEMS, NOR WHERE FAILURE

COULD RESULT IN INJURY, DEATH, PROPERTY OR ENVIRONMENTAL DAMAGE.

IF THE PRODUCT IS NOT LABELED AS "AUTOMOTIVE GRADE," IT SHOULD NOT BE

CONSIDERED SUITABLE FOR AUTOMOTIVE APPLICATIONS. GEEHY ASSUMES NO

LIABILITY FOR THE USE BEYOND ITS SPECIFICATIONS OR GUIDELINES.

THE USER SHOULD ENSURE THAT THE APPLICATION OF THE PRODUCTS

COMPLIES WITH ALL RELEVANT STANDARDS, INCLUDING BUT NOT LIMITED TO

SAFETY, INFORMATION SECURITY, AND ENVIRONMENTAL REQUIREMENTS. THE USER

ASSUMES FULL RESPONSIBILITY FOR THE SELECTION AND USE OF GEEHY

PRODUCTS. GEEHY WILL BEAR NO RESPONSIBILITY FOR ANY DISPUTES ARISING

FROM THE SUBSEQUENT DESIGN OR USE BY USERS.

7. Limitation of Liability

IN NO EVENT, UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL GEEHY OR ANY OTHER PARTY WHO PROVIDES THE DOCUMENT AND

PRODUCTS "AS IS", BE LIABLE FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,

DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR

INABILITY TO USE THE DOCUMENT AND PRODUCTS (INCLUDING BUT NOT LIMITED TO

LOSSES OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED

BY USERS OR THIRD PARTIES). THIS COVERS POTENTIAL DAMAGES TO PERSONAL

SAFETY, PROPERTY, OR THE ENVIRONMENT, FOR WHICH GEEHY WILL NOT BE

RESPONSIBLE.

8. Scope of Application

The information in this document replaces the information provided in all previous versions

of the document.

© 2025 Geehy Semiconductor Co., Ltd. - All Rights Reserved

http://www.geehy.com/

	1. Introduction
	1.1. Full Name and Abbreviation Description of Terms
	1.2. R5xx SoC Introduction

	2. MDK-ARM Development Tool Chain
	2.1. Simulator Support
	2.2. IDE Version
	2.3. Project Operation
	2.3.1. Install Pack support
	2.3.2. Open the example project
	2.3.3. Project establishment
	2.3.4. File import
	2.3.5. Configure macro definition
	2.3.6. Compilation command control
	2.3.7. Compilation optimization level settings
	2.3.8. Program compilation
	2.3.9. Program download
	2.3.10. Program simulation
	2.3.10.1. J-Link emulation
	2.3.10.2. Geehy Link emulation

	2.4. C Language Compatibility
	2.4.1. File format support
	2.4.2. Use of sizeof

	2.5. Assembly Compatibility
	2.5.1. File format support
	2.5.2. Assembly code format requirements

	2.6. Linker Script Files
	2.7. RAM Operation

	3. IAR EW for Arm Development Tool Chain
	3.1. Simulator Support
	3.2. IDE Version
	3.3. Install the Chip Support
	3.4. Project Operation
	3.4.1. Open the example project
	3.4.2. Project establishment
	3.4.3. File import
	3.4.4. Configure header file path and macro definition
	3.4.5. Compilation optimization level settings
	3.4.6. Program compilation
	3.4.7. Program simulation and download

	3.5. C Language Compatibility
	3.6. Assembly Compatibility
	3.6.1. File format support
	3.6.2. Assembly code format requirements

	3.7. Linker Script Files
	3.8. RAM Operation

	4. Eclipse
	4.1. Emulator Support
	4.2. IDE Version
	4.3. LLVM_For_ARM_Toolchain
	4.4. GDB Service
	4.5. Project Operations
	4.5.1. Opening the Example Project
	4.5.2. Project Creation
	4.5.3. File Import
	4.5.4. Compilation Configuration
	4.5.5. Compilation Optimization Level Settings
	4.5.6. Program Compilation
	4.5.7. Program Simulation and Download
	4.5.7.1. J-Link Simulation
	4.5.7.2. GEEHY LINK Simulation

	4.6. C Language Compatibility
	4.7. Assembly Compatibility
	4.7.1. File Format Support
	4.7.2. Assembly Coding Format Requirements

	4.8. Linker Script Files
	4.9. RAM Operating

	5. pyocd Adaptation for G32R501
	5.1. Background
	5.2. PyOCD Adaptation Modifications
	5.2.1. Adding M52 Core Support
	5.2.2. Add G32R501 Chip Support
	5.2.3. pyocd_user.py
	5.2.3.1. DCS Key
	5.2.3.2. Connection Phase

	5.3. pyocd Installation
	5.3.1. Windows
	5.3.1.1. Install Python
	5.3.1.2. Install pyocd

	5.3.2. Ubuntu
	5.3.2.1. Installing Python
	5.3.2.2. python3-venv
	5.3.2.3. Install pyocd
	5.3.2.4. USB Permissions for pyocd

	5.3.3. Modify Replacement Item Content

	5.4. Command Line Usage
	5.5. Integration with Eclipse
	5.5.1. Single-core Simulation Configuration
	5.5.2. Dual-Core Emulation Configuration
	5.5.3. Program Fails to Run After Exiting Emulation in Ubuntu
	5.5.3.1. Cause
	5.5.3.2. Solution

	6. Revision

